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A method is proposed which, for specific assumptions, allows
us to determine the density distribution of a constant current flow-
ing between electrodes in a plasma for plane parallel or radially
symmetric electric and magnetic fields, allowing for anisotropic
conductivity.

NOTATION

er, g, ez ate the unit vectors in a cylindrical coordinate system;
E, Er, Ez aretheelectric field strength vector and its components; V is
the electric field potenmtial; H, Hy, Hg, Hy are the magnetic field
strength and its components; j is the current density vector; e is the
electron charge; m is the electron mass; ¢ is the velocity of
light; 7 is the momentum tansfer time; oy is the normal plasma
conductivity; we is the electron cyclotron frequency; h is the unit
vector in the direction of the magnetic field.

Fig. 1

We shall assume that a) the electrodes are made of perfectly
conducting material and the walls of the enclosure of insulating
material, b) the self-field of the current flowing in the plasma may
be neglected.

The equation for Ohm's law for a constant current in a stationary
uniform plasma has the form [1]
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Thus the conductivity tensor of a plasma situated in a magnetic
field of field strength H = {Hr’ Hg, HZ} has the form
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For an electric field of field strength
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the current density in the plasma is

J =00 {QuE, + QuE;} e, + 0o {QuuBy + RusEz} €0 +
+ 0o {QuEr + QuE:} e, (5)

In the steady state Vj = 0. Since in an axially symmetric field
/00 = 0 it follows from (4) and (5) that
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In the general case of a nonuniform field this is an equation with
variable coefficients. In a sufficiently small volume of space where
the field may be taken to be uniform dH/dr = 8H/0z = 0 and Eq. (6)
assumes the form
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Here Qk, Qssk, Qu3k, Ws1k are constants obtained for the mean
value of H in the k-th element of space. Making the following
change of variables
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enables us to reduce Eq. (7) to the canonical form [2]
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Thus if the magnetic field component Hg can be neglected (i.e.,
the self-field of the current in the plasma may be neglected), then

Fig, 2

Q1 = Qi3 and Eq. (9) becomes Laplace’s equation,

AV = 0, (10)
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the solution of which may be obtained on an analog machine and
gives the current distribution in the plasma [3].

The boundary conditions in the (7, £) plane remain the same
as in the (r,z) plane while the boundary itself changes. The point
A(m,l) in the rz plane passes to the point A{(m’,l") in the (7, §)
plane. Here
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where n is the number of separations of the abscissa of point A(m, !
for equal intervals Ar.

In the case of a uniform field directed along the Z axis, H =
={o, O,HZ}, transformation of the region leads to compression along
the Z axis with coefficient kz [4]:

1/k, =V 1+ o2 (12)

We now give results of the solution of a problem of this type. Two
electrodes—a cathede 1 and anode 2 are placed in the cylindrical
chamber of Fig. 1. The chamber is situated in a radially symmetric
magnetic field increasing in the direction of the anode (the solenoid
is mot shown in Fig. 1). The magnetic field strength is measured a.
intervals of 1 cm by a Minsk-1 machine. The pressure in the chamber
was p= 0.1 mm Hg, and Te= 25000° K.

Figure 1 shows the distribution of streamlines in the absence of
a magnetic field. Figure 2 gives a transformation of both chamber
and current distribution in the (7, §) plane for a field strength of
H =40 Oe at the pointr = 0, z = 0 and.Hy = 4 Oe, H, =18 Qe at

the point r = 3, z = 5. Figure 3 gives a transformation of the chamber,
and current distribution for H = 200 Oe, H;= 20 Oe, Hgz = 90 Oe
at the same points.

Fig. 3
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